~meLek~
GalataSaray'ım
TÜREV:
*
Y’,f’(x),dy/dx m,tg q
*
P noktasına minimum oynama
Verdiğimizi düşünelim.
Dx,bizde seçilebilen en büyük
oynama olsun.
*
r¹q tg r¹tg q tg r=Dy/Dx
*
*
*
*
*
*
*
*
*
*
*
Lim tg r=tg q
Dx®0
lim (Dy/Dx)=tg q
Dx®0
lim f(x+Dx)-f(x) / Dx=lim Dy/Dx=dy/dx=y’=f(x)
Dx®0 Dx®0
*
*
R,T’ye nekadar yaklaşırsa,açılar da okadar yakın olur ve
Minimumda,yani liitte tan r0tan q olur.
Lim Dy=dy
Dx®0
*
*
*
*
*
*
*
Türevin Tanımı:
*
Dy/dx=lim f(x+Dx)-f(x) / Dx
Dx®0
Fonksiyonun,o noktada sadece bir teğeti vardır.
*
*
Örnek:
*
Y=x³’ün türevvini türev tanımından bulunuz.
*
F(x)=y=x³
F(x+Dx)=(x+Dx)³
Dy / dx =lim (x+Dx)³-x³ / Dx
Dx®0
=lim x³+3x²Dx+3x(Dx)²+(Dx)³-x³
Dx®0
=lim Dx(3x²+3xDx+(Dx)²) / Dx
Dx®0
= 3x²
*
Hatırlatma:
*
*Cos(a-b)=Cos a.Cos b+Sin a.Sin b
*Cos(a+b)=Cos a.Cos b-Sin a.Sin b
*Cos(a-b)+Cos(a+b)=2.Cos a.Cos b
*Cos(a-b)-Cos(a+b)=2.Sin a.Si b
*Sin(a+b)=Sin a.Cos b+Sin b.Cos a
*Sin(a-b)=Sin a.Cos b-Sin b.Cos a
*Sin(a+b)+Sin(a-b)=2.Sin a.Cos b
*Sin(a+b)-Sin(a-b)=2.Sin b.Cos a
*a+b=p a=p+q / 2
*a-b=q b=p-q / 2
*Cos q+Cos p=2Cos p+q / 2 . Cos p-q / 2
*Cos q-Cos p=2Sin p+q / 2 . Sin p-q / 2
*Sin p+Sin q=2Sin p+q / 2 . Cos p+q / 2
*Sin p-Sin q=2Sin p-q / 2 . Cos p+q / 2
*
İspat:
*
F(x)=İn x?y’=?
F(x+Dx)=Sin (x+Dx)
Dy / dx=lim Sin(x+Dx)-Sin x / Dx
Dx®0
= lim 2Sin Dx/2 . Cos (2x+Dx)/2 / Dx
Dx®0
=lim Sin (Dx/2 / Dx/2).lim (Cos 2x+Dx / 2)
Dx®0 Dx®0
=Cos x
*
Türevin Temel Özellikleri:
*
1)f(x)=(f1(x)+f2(x)+...+fn(x))
f’(x)=( )’
f’(x)=(f1’(x)+f2’(x)+...+fn’(x))
*
Bir toplamın türevi,ayrı ayır türevlerin toplamıdır.
*
2)f(x)=p(x).r(x)?
f’(x).r(x)+f(x).r’(x)
*
3)f(x)=w(x)/q(x)?
f’(x)=(w’(x).q(x)-w(x).q’(x)) / (q(x))²
*
Pratik Türev Kuralları:
*
1)y=c y’=0 c®sabit
*
2)y=c.u y’=c.u’ y=y(u)?y’=c u=u(x)
*
3)u=s²+2 u=u(s) w=t²+2t+5 w=w(t) y=x²+4x y=f(x)
*
Serbast değişkenin kendine göre türevi 1’dir.
*
y=un y’=n.un-1.u’
*
4)y=k/un y=k.un y’=k.(-n).u-n-1.u’ y’=-kn.u’ / un+1
*
5)y=nÖum y=um/n y’=m/n.um/n – 1.u’ y’=m/n.um-n/n.u’ y’=m.u’ / n.un-m/n
y’=m.u’ / nnÖun-m
6)y=lnp.uq=(ln uq)p y=(q.ln u)p y=qp.(ln u)p
y’=qp.p(ln u)p-1.1/u.u’
*
7)y=au ln y=u.ln a 1/y’=ln a.u’ y’=au.ln a.u’
*
8)y=uv u=u(x) v=v(x) ln y=v.ln u y’7y=v’.ln(u)+u’/u . v
y’=uv.(v’.ln (u)+u’2/u . v)
*
9)y=tg u y’=(1+tg²u).u’=1/Cos²u . u’=Sec²u.u’
y=Ctg u y’=-(1+Ctg²u).u’=-1/Sin²u . u’=Cosec²u.u’
y=k.Sinpuq=k.(Sinuq)p y’=k.p.(Sin uq)p-1.Cos uq.q.uq-1.u’
*
10)y=Arc sin u y’=1/Ö1-u² . u’ y=Arc tg u y’=1/1+u² . u’
Sin(Arc sin x)=x Arc tg(tg x)=x
*
11)y=Sec u=1/Cos u y’=(Sin u/Cos u.Cos u).u’ y’=Sec u.tg u.u’
*
12)y=Cosec u=1/Sin u y’=-Cosec u.Ctg u.u’
*
*y=f(x) şeklindeki fonksiyonlara “açık fonksiyon” denir.
*f(x,y)00 şeklindeki fonksiyonlara “kapalı fonksiyon” denir.
*
y²+xy+exy=0 (kaapalı fonksiyon)
y=2x+1 (açık fonksiyon)
y-2x-1=0 (kapalı tipte yazılabilen açık fonksiyon)
Kapalı fonksiyon Türleri:
*
Örnek:
y²x+3y+exy=0
(2y.y’.x+y²)+3y+exy.ln e.(y+y’.x)=0
2y.y’.x+y²+3y’+y.exy+y’.x.exy=0
Y’(2xy+3+x.exy)=-(y²+y.exy)
Y’=-y²+y.exy / 2xy+3+x.exy
*
Ardışık Türev:
*
Y’=dy/dx y’’=d²y/dx² y’’’=d³y/dx³ y(n)=dny/dxn
*
D/dx (türev operatörü) d/dx . y?dy/dx
dy’/dx=d/dx.(dy/dx) dy’’/dx=d/dx.(d²y/dx²)
*
Örnek:
*
Y=1/x ifadesinin n mertebesinden türevi nedir?
*
Y’=-1/x² y’’=2/x³ y’’’=-2.3/x4 y(4)=2.3.4/x5 y(n)=(-1)n.n!/xn+1
*
*
Kapalı Fonksiyonlarda Ardışık Türev:
*
F(x,y)=0 y’=-f’x/f’y dy’/dx=y’’=d²y/dx²
*
Örnek:
*
Y=Sin(x+y)=0 ? y’’=?
*
y-Sin(x+y)=0
y’=(Cos(x+y).1) / (1-Cos(x+y).1)
y’’=(-Sin(x+y).(1+y’).(1-Cos(x+y))-Sin(x+y).(1+y’).Cos(x+y)) / (1-Cos(x+y))²
*
*
Ters Fonksiyon Türevi:
*
Dy/Dx . Dx/Dy=1 Dy/Dx=1/(Dx/Dy)
*
lim Dy/Dx=lim 1/(Dx/Dy)
Dx®0 Dx®o0
*
dy/dx=1/(dx/dy) f’(x)=1/r’(y)
*
*
*
*
*
Örnek:
*
y²+y+Sin x=0
y’=-f’x/f’y=-Cos x/2y+1
-(y²+y)=Sin x
Arc sin(-y²-y)=x
-2y-1/Ö1-(-y²-y)²=dx/dy
-2y-1/Cos x
0dx
7dy
-Cos x
72y+1=1/(dx/dy)=dy/dx
*
Y’,f’(x),dy/dx m,tg q
*
P noktasına minimum oynama
Verdiğimizi düşünelim.
Dx,bizde seçilebilen en büyük
oynama olsun.
*
r¹q tg r¹tg q tg r=Dy/Dx
*
*
*
*
*
*
*
*
*
*
*
Lim tg r=tg q
Dx®0
lim (Dy/Dx)=tg q
Dx®0
lim f(x+Dx)-f(x) / Dx=lim Dy/Dx=dy/dx=y’=f(x)
Dx®0 Dx®0
*
*
R,T’ye nekadar yaklaşırsa,açılar da okadar yakın olur ve
Minimumda,yani liitte tan r0tan q olur.
Lim Dy=dy
Dx®0
*
*
*
*
*
*
*
Türevin Tanımı:
*
Dy/dx=lim f(x+Dx)-f(x) / Dx
Dx®0
Fonksiyonun,o noktada sadece bir teğeti vardır.
*
*
Örnek:
*
Y=x³’ün türevvini türev tanımından bulunuz.
*
F(x)=y=x³
F(x+Dx)=(x+Dx)³
Dy / dx =lim (x+Dx)³-x³ / Dx
Dx®0
=lim x³+3x²Dx+3x(Dx)²+(Dx)³-x³
Dx®0
=lim Dx(3x²+3xDx+(Dx)²) / Dx
Dx®0
= 3x²
*
Hatırlatma:
*
*Cos(a-b)=Cos a.Cos b+Sin a.Sin b
*Cos(a+b)=Cos a.Cos b-Sin a.Sin b
*Cos(a-b)+Cos(a+b)=2.Cos a.Cos b
*Cos(a-b)-Cos(a+b)=2.Sin a.Si b
*Sin(a+b)=Sin a.Cos b+Sin b.Cos a
*Sin(a-b)=Sin a.Cos b-Sin b.Cos a
*Sin(a+b)+Sin(a-b)=2.Sin a.Cos b
*Sin(a+b)-Sin(a-b)=2.Sin b.Cos a
*a+b=p a=p+q / 2
*a-b=q b=p-q / 2
*Cos q+Cos p=2Cos p+q / 2 . Cos p-q / 2
*Cos q-Cos p=2Sin p+q / 2 . Sin p-q / 2
*Sin p+Sin q=2Sin p+q / 2 . Cos p+q / 2
*Sin p-Sin q=2Sin p-q / 2 . Cos p+q / 2
*
İspat:
*
F(x)=İn x?y’=?
F(x+Dx)=Sin (x+Dx)
Dy / dx=lim Sin(x+Dx)-Sin x / Dx
Dx®0
= lim 2Sin Dx/2 . Cos (2x+Dx)/2 / Dx
Dx®0
=lim Sin (Dx/2 / Dx/2).lim (Cos 2x+Dx / 2)
Dx®0 Dx®0
=Cos x
*
Türevin Temel Özellikleri:
*
1)f(x)=(f1(x)+f2(x)+...+fn(x))
f’(x)=( )’
f’(x)=(f1’(x)+f2’(x)+...+fn’(x))
*
Bir toplamın türevi,ayrı ayır türevlerin toplamıdır.
*
2)f(x)=p(x).r(x)?
f’(x).r(x)+f(x).r’(x)
*
3)f(x)=w(x)/q(x)?
f’(x)=(w’(x).q(x)-w(x).q’(x)) / (q(x))²
*
Pratik Türev Kuralları:
*
1)y=c y’=0 c®sabit
*
2)y=c.u y’=c.u’ y=y(u)?y’=c u=u(x)
*
3)u=s²+2 u=u(s) w=t²+2t+5 w=w(t) y=x²+4x y=f(x)
*
Serbast değişkenin kendine göre türevi 1’dir.
*
y=un y’=n.un-1.u’
*
4)y=k/un y=k.un y’=k.(-n).u-n-1.u’ y’=-kn.u’ / un+1
*
5)y=nÖum y=um/n y’=m/n.um/n – 1.u’ y’=m/n.um-n/n.u’ y’=m.u’ / n.un-m/n
y’=m.u’ / nnÖun-m
6)y=lnp.uq=(ln uq)p y=(q.ln u)p y=qp.(ln u)p
y’=qp.p(ln u)p-1.1/u.u’
*
7)y=au ln y=u.ln a 1/y’=ln a.u’ y’=au.ln a.u’
*
8)y=uv u=u(x) v=v(x) ln y=v.ln u y’7y=v’.ln(u)+u’/u . v
y’=uv.(v’.ln (u)+u’2/u . v)
*
9)y=tg u y’=(1+tg²u).u’=1/Cos²u . u’=Sec²u.u’
y=Ctg u y’=-(1+Ctg²u).u’=-1/Sin²u . u’=Cosec²u.u’
y=k.Sinpuq=k.(Sinuq)p y’=k.p.(Sin uq)p-1.Cos uq.q.uq-1.u’
*
10)y=Arc sin u y’=1/Ö1-u² . u’ y=Arc tg u y’=1/1+u² . u’
Sin(Arc sin x)=x Arc tg(tg x)=x
*
11)y=Sec u=1/Cos u y’=(Sin u/Cos u.Cos u).u’ y’=Sec u.tg u.u’
*
12)y=Cosec u=1/Sin u y’=-Cosec u.Ctg u.u’
*
*y=f(x) şeklindeki fonksiyonlara “açık fonksiyon” denir.
*f(x,y)00 şeklindeki fonksiyonlara “kapalı fonksiyon” denir.
*
y²+xy+exy=0 (kaapalı fonksiyon)
y=2x+1 (açık fonksiyon)
y-2x-1=0 (kapalı tipte yazılabilen açık fonksiyon)
Kapalı fonksiyon Türleri:
*
Örnek:
y²x+3y+exy=0
(2y.y’.x+y²)+3y+exy.ln e.(y+y’.x)=0
2y.y’.x+y²+3y’+y.exy+y’.x.exy=0
Y’(2xy+3+x.exy)=-(y²+y.exy)
Y’=-y²+y.exy / 2xy+3+x.exy
*
Ardışık Türev:
*
Y’=dy/dx y’’=d²y/dx² y’’’=d³y/dx³ y(n)=dny/dxn
*
D/dx (türev operatörü) d/dx . y?dy/dx
dy’/dx=d/dx.(dy/dx) dy’’/dx=d/dx.(d²y/dx²)
*
Örnek:
*
Y=1/x ifadesinin n mertebesinden türevi nedir?
*
Y’=-1/x² y’’=2/x³ y’’’=-2.3/x4 y(4)=2.3.4/x5 y(n)=(-1)n.n!/xn+1
*
*
Kapalı Fonksiyonlarda Ardışık Türev:
*
F(x,y)=0 y’=-f’x/f’y dy’/dx=y’’=d²y/dx²
*
Örnek:
*
Y=Sin(x+y)=0 ? y’’=?
*
y-Sin(x+y)=0
y’=(Cos(x+y).1) / (1-Cos(x+y).1)
y’’=(-Sin(x+y).(1+y’).(1-Cos(x+y))-Sin(x+y).(1+y’).Cos(x+y)) / (1-Cos(x+y))²
*
*
Ters Fonksiyon Türevi:
*
Dy/Dx . Dx/Dy=1 Dy/Dx=1/(Dx/Dy)
*
lim Dy/Dx=lim 1/(Dx/Dy)
Dx®0 Dx®o0
*
dy/dx=1/(dx/dy) f’(x)=1/r’(y)
*
*
*
*
*
Örnek:
*
y²+y+Sin x=0
y’=-f’x/f’y=-Cos x/2y+1
-(y²+y)=Sin x
Arc sin(-y²-y)=x
-2y-1/Ö1-(-y²-y)²=dx/dy
-2y-1/Cos x
0dx
7dy
-Cos x
72y+1=1/(dx/dy)=dy/dx