Simetriyi Modelleriyle Açıklama

Konusu 'Matematik & Geometri' forumundadır ve Suskun tarafından 6 Nisan 2011 başlatılmıştır.

  1. Suskun

    Suskun V.I.P Vip Üye

    Katılım:
    16 Mart 2009
    Mesajlar:
    23.446
    Beğenileri:
    88
    Ödül Puanları:
    5.480
    Yer:
    Türkiye

    Simetriyi Modelleriyle Açıklama

    Simetri, ilki, belirsiz bir mükemmellik veya güzelliği yansıtan, bir muntazamlık veya estetik olarak hoşa giden bir orantılılık ve denge duygusu olarak; İkincisi kesin ve iyi tanımlanmış biçemsel sistemin kurallarına (geometri, fizik vb.) göre gösterilebilen veya ispat edilebilen bir denge ve orantılılık kavramı veya "kendine benzeşme örneği"' olarak iki şekilde tanımlanır. Sıkışma mükemmelliğine ve tabii düzenine izafe eden biçim tanımlı geometrik ölçüsüne yorumladı.

    [​IMG]

    Simetrinin hassas tanımının değişik ölçüleri ve işlemsel tanımları vardır. Örnek olarak simetri değişik şekillerde gözlemlenebilir: Geçen zamana nazaran, bir hacimsel ilişkiye istinaden, ölçeklendirme, döndürme ve aynalama gibi geometrik dönüşümler vasıtasıyla, diğer işlevsel fonksiyonlar vasıtasıyla (düzenli bir desen ile kaplı yer döşemesi, vb), soyut nesnelerin durumu olarak bilimsel modeller, dil, müzik, ve hatta bilginin kendisi. Simetrik nesneler, bir kişi, kristal, desenli örtü, yer döşemesi veya molekül, ve hatta soyut bir nesne gibi bir özdek(madde) olabilir.


    [​IMG]

    Simetri üç farklı görüş açısında değerlendirilir. İlki, simetrilerin tanımlandığı ve tam olarak kategorize edildiği matematik'dir. İkinci görüş simetriyi bilime ve teknolojiye göre tanımlar.
    Matematikte bir nesnenin simetrik olması için verilen bir matematiksel işleve tabi tutulduğunda bu işlemin nesneyi ve görünüşünü değiştirmemesi gerekir. Verilen bir dizi matematik işleve tabi tutulduğunda birinden diğeri elde edilebiliyorsa (veya tersi) iki nesne birbirine göre simetriktir.
    Simetriler aralarında insanların ve diğer canlıların da bulunduğu yaşayan organizmalarda da görülebilir.



    [​IMG]
    Leonardo da Vinci'nin Vitruvian Adamı (1492) insan vücudundaki simetrinin gösteriminde kullanılır




    ...................................................................



    Kazanım(2) Simetriyi modelleriyle açıklama

    Yöntem ve Beceriler: İletişim, gözlem, ilişkilendirme

    Ders kitabı: 188.sayfa

    Çalışma kitabı: 126.sayfa

    Hazırlık

    1. Kullanılacak Araç Gereçler
    * Yaprak, kâğıt.

    Motivasyon

    * Yaprak ortadan ikiye katlanacak. Öğrencilere, katlanan parçaların birbirine eş olup olmadığı sorulacak.

    * Öğrencilerin çevrelerinden iki eş parçaya ayrılabilen nesnelere örnekler vermeleri

    istenecek.

    Açıklama

    * Kelebeğin kanatları, çiçek, yaprak, kumaş, kilim desenleri vb. modeller üzerinde gözlemler yaptırarak simetrik oluşumlar kavratılacak.



    Ders kitabı – 188. sayfa

    Nesnelerin eş parçalarını bulup aynı renge boyayalım.

    …………………………………

    Bu parçalar birbirine simetrik midir?

    Boyadığımız parçalar tüm özellikleri ile birbirine eştir. Eş parçalar birbirinin simetriğidir.



    YAPRAK SİMİT

    A B A parçası Simidin

    B parçasının bir yarısı,

    simetriğidir. diğer yarısının

    diyebilir miyiz? simetriğidir.

    ÖLÇME VE DEĞERLENDİRME

    Çevremizden simetrik olan cisimler bulup yazalım.

    Çalışma kitabı – 126. sayfa

    İki eş parçaya bölünebilen cisimlerin altındaki yuvarlakları pembe renge boyayalım. İki eş parçaya bölünemeyen cisimlerin altındaki yuvarlakları da yeşil renge boyayalım.

Sayfayı Paylaş

Konu Etiketleri...

  1. simetriyi modelleri ile açıklama 2 sınıf

    ,
  2. simetriyi modelleri ile açıklama

    ,
  3. simetri modelleri

    ,
  4. simetriyi modelleriyle açıklamak,
  5. simetriyi modelleri ile açıklama2.sinif,
  6. yaprak simetrik midir neden,
  7. simetri modelleri ile acıklama,
  8. simetriyi modelleri ile açıklayan bir pano,
  9. simetri nedir ve modelleri,
  10. simetri modelleri 2.sınıf